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A study has been made [I] of the hydrodynamic interaction between two point charges ex- 
ploded on the surface of the ground; it was assumed there that Lavrent'ev's solid--llquid 
model may apply within the yield region, which implies zones having velocities below the 
critical value, which implies that there is a range in L (where 2L is the distance between 
the charges) in which the solution is not unique. In this study of interaction between 
charges it is also assumed, as in [2], that there is a zone at rest in the soil, as in the 
case of a symmetrical charge of variable cross section. This zone at rest allows one to re- 
tain the solid--liquid model while obtaining a unique solution of one sheet. 

We consider the boundary to the crater produced by two identical flat charges placed on 
the surface of the ground; the solid--liquid model is used, in which the motion is described 
by the equation for an ideal incompressible liquid for all points where the speed is v > v, 
(v, is the critical speed). Outside the zone where v > v,, the soil is taken as absolutely 
solid. The boundary between the two regions is a solid wall and is defined from the condi- 
tion v = v,. Figure i shows the corresponding model for the general case, where AB and A'B' 
are the flat charges, CQC' is the free surface, CDC' is the boundary of the crater, and 
HNH'M is the immobile area, i.e., an absolutely solid part where v = v, at the boundary (as 
at the edge of the crater). 

By virtue of the symmetry with respect to the y axis, we need consider only the right- 
hand half of the motion, which is denoted by Gz, while the boundary is denoted by F z. The 
initial parameters are the following: the width I of the charge AB, the velocity potential 
~0 there, the critical velocity v,, and the distance 2L between the charges (L = QA). If we 
introduce the following dimensionless r~lations: 

w' = w/%, v' = v/v , ,  z' :- zv,/~o , 

where z = x + iy is the physical plane and w = ~ + i~ is the complex flow potential, then 
the solution is dependent only on the parameters l' = Iv,/~o and L' = Lv,/~o, since ~ = I, 

! 
v, = i; in what follows we utilize the dimensionless variables while omitting the primes for 

simplicity. 

The problem is reducible to the following boundary-value problem: determine the posi- 
tion and shape of the unknown parts CD and MHN on the boundary Fz such that a function ana- 
lytical in Gz and continuous in Gz (apart from the points A and B) is to be found as w(z) = 
~(x, y) + i~(x, y) to satisfy the following conditions on Fz: 

(p = - -  I o n  AB; q0 : 0 on  QA, BC; ~ = 0 on  QNHMDC; ( 1 )  

Oep/Os = - -  t on  NH; O(p/Os = t :on HM, DC, ( 2 )  

where s is the abscissa of a point on F z reckoned along the curve. Function w(z) should have 
logarithmic singularities at A and B. 

In the plane of the variable w = ~ + i~, the solution should correspond to region G w on 
the basis of condition (i), while in the plane of the variable to = dw/dz = Vx -- ivy it should 
correspond to Gm by virtue of condition (2), as in Fig. 2, where the corresponding points in 
the different planes are denoted by the same letters. So far the positions of the vertices 
have not been determined for these regions. Further, we also do not know the positions of 
the points M, N, and D on the boundary of Gw, nor do we know the positions of points H and 

Q on the boundary of G~. 
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We introduce the auxiliary half-plane Im ~ > 0 (denoted by G~) of the variable ~ = ~ + 
iq (Fig. 3) in order to construct the solution; then we map G w and G~ conforma!ly onto G~ 
to find the solution as the function that maps G~ on Gz: 

z(~) = ~ ~' (~) dt ~ ~ o. (3) 
--i 

The derivative w'(~) for the mapping of G~ on G w is given by the Christoffel-~Schwarz 
formula as follows on the basis of the symmetry of the regions: 

w'(4) -~ 4K/(4 ~ -  a~)V 42 - -  l ,  ( 4 )  

where K = --(2i/~) ~ -- i. 

The function m(~) that maps G~ on G~ is represented as a superposition of the three 
functions ~{~2[~i(~)]} in accordance with the formulas 

(t -~- k) ~ - -  i -{- k 42 ___: ~ __ 2 (d~- -  a~) ( : 2 - - i )  

~ 1 =  ( n + k ) ~ - - ~ + k '  ( ~ - - ~ )  ( : ~ - - ~  ' (5)  

w h e r e  a~  = ~ ( a ) ;  d~ = ~ , ( d ) ;  k = ~(cz 2 - - n ' a ) / ( a  a - - 1 ) .  

The symmetryof G~ andthe symmetryof the corresponding region in the plane of ~ givesus 

m = [(a 2 + n)d--a2(n + ] ) ] / [ ( n +  i ) d - - a ~ - - n ] .  ( 6 )  

The other parameters a, n, and d appearing in (4) and (5) are found from a system of 
three nonlinear equations for w' (~) and m(~): 

--a 

i ~" d ~  = L ' ;  (7) 
(0  

- - I  

c o  o o  

j ~ (~) ~ = l ' ;  (8) 
- - a  a 

.! ~ '  (4) R~ ~ (~) d4 --  i" ~ '  (0  n~ ~ (~) d4 = 0, (9) 
0 6' 
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TABLE i 

L" l" - - l ' N  XH - - Y H  --~,i.M - - Y D  x C a m -  t~ O' 
~e 

i i 
2 i 
3 l 
4 2 
5 i 
6 1 

0,02 
O,Oi 
0,02 
~ ,02 

0 

0,03 
0,03 
0,06 
0,03 
0,03 
0,06 

0,029 
0,020 
0,037 
0,030 

0,008 
0,002 
0,0t0 
0,003 

0,034 
0,02t 
0,044 
0,033 

0,05i 
0,024 
0,063 
0,036 

0,058 
0,080 
0,083 
O,it3 
0,087 
O,ii6 

0,i89 
0,i90 
0,268 
0,262 
0,i85 
0,264 

Fig. 5 

a I b 

! t 

Fig. 6 

which is derived from the conditions z(--a) = L', z(a) -- z(--a) = l' and the specification 
that MD lies on the line x = 0. 

In numerical calculations, it is usually simpler to use a partly reversed formulation, 
in which two parameters are specified, for instance, a and d, whereupon the third parameter 
n is derived from (9). Then L' and l' are defined by (7) and (8). However, the resulting 
series of solutions in terms of two parameters is inconvenient for practical purposes, so 
it is better to take the direct approach presented above, i.e., specification of l' and L' 
and derivation of a, n, and d from (7)-(9). This is the formulation used below in the M-222 
computer calculations. Figures 4 and 5 show the more interesting results. 

In the examples, the input quantities L' and l' (Table i) were selected to make the 
results comparable; for instance, example 2 was calculated with the distance between the 
charges smaller than that in example i, but all the other conditions the same (Fig. 4). It 
is clear that reducing the distance causes the immobile area to rise toward the surface and 
become smaller, while the depth of the crater increases. For comparison, line 5 in Fig. 4 
shows the boundary of the crater in the limiting case L' = 0, which corresponds to the solu- 
tion of [3]. 

Example 3 differs from example i in that the charge width has been doubled, while in 
; 

example 4 the charge weight has been doubled, i.e., ~o = 2 for the same distance L' between 
the charges (Fig. 5). Examples 3 and 4 differ in charge width but are the sa~e in charge 
energy and separation. Example 4 differs from example 3 in that the depth of the crater has 
been increased while the area of the immobile region is less. Line 6 in Fig. 5 shows the 
crater for the charge of example 3 but with L' = 0. The coordinates of the characteristic 
points on the boundary are listed in Table i. 

The values of L' and l' show that the shape of the crater takes one of the forms shown 
in Fig. 6, apart from the instance of Fig. i; for example, while the shape of Fig. i occurs 
for certain L' and l', any increase in L' or reduction in l' causes MD to fall to zero, and 

the solution takes the form of i (Fig. 6a) if there is any further change in L' or l'. If 
the variation in L' or l' is continued, the crater splits up into two independent areas, 
without interaction between the charges (form 2, Fig. 6a). If L' and l' are sufficiently 
large, there may be four such areas (form 3, Fig. 6a). If l' is large, there may be three 
unconnected areas, with charge interaction in the central region (Fig. 6b). 

The case where G z takes the form i of Fig. 6a is a particular case of the one examined 
in detail above: regions G w and Gm have the forms shown in Figs. 2 and 3 (points M and D are 
chosen appropriately), while there is no vertical section MD in Gm. The solution can still 
be derived from (3), but one should put d~ = 0 in (5). Equations (6) and (9) are no longer 
necessary, and we have merely (7) and (8) to determine a and n. Any attempt to define a 

1 3 0  



solution in this way for L' and l' such that there is a solution as in Fig. 1 results in a 
solution with more than one sheet (points at which x is less than 0 appear on curve HC). 

The other cases, where the crater splits up into unconnected areas, are of little 
interest from the viewpoint of charge interaction and therefore are not considered. 
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SPALLING IN STEEL PRODUCED BY EXPLOSION OF A SHEET CHARGE AND 

COLLISION OF A PLATE 

A. P. Rybakov UDC 539.42:620.178 

A specific type of damage (spalling) occurs in strong shock waves and in explosions act- 
ing on barriers composed of material of finite tensile strength. The tensile stresses that 
produce the spalling and fracture arise by interaction between colliding waves. Failure is 
then always preceded by compression in shock waves. 

There are very many papers on such spalling, and one of the early extensive studies [!] 
gave a detailed description of the phenomena produced in metals by explosive loading. In 
particular, there was a fairly detailed description of spalling, with an attempt to measure 
a quantitative characteristic, namely, the critical stress. Subsequent studies [1-13] have 
provided quantitative criteria and schemes based on finite failure times [2], the dislocation 
mechanism of failure [12], and a quasiacoustic approximation in terms of stored elastic 
energy [13]. 

Shock loading can occur in various ways, e.g., detonation of a block of explosive in 
contact with an obstacle, collision of a plate, or detonation of a sheet of explosive. Two 
different situations occur, namely, a planar shock wave propagating into the obstacle or 
parallel to the free surface, the general case being propagation at some angle ~. The 
critical failure stress may be determined from the difference between the initial speed wo 
of the free surface and the mean speed w: 

~ r  = (I/2)9oc~ (1) 

where Oo and Co are the density and speed of sound in the material, If the shock wave is 
incident at right angles Aw = wo -- ~ [2], while a shock wave emergent at an angle to the 
surface gives Aw = wo --w/cos ~ [7, 8]. 

We have examined the effects of sheets of explosives and collision of plates with 
obstacles made of St.3 steel, with measurement of the thickness and w for the fragments. 
The sheet charge in contact with the obstacle was detonated in such a way that a load trav- 
eling with the detonation speed was generated. We used cast Trotyl + Hexogen 50/50. The 
charges were made as plates 80 x 150 mm 2 and of thickness 3 and 5 mm. The colliding plates 
were made of steel of thickness 1.06 and 1.52mmand moving at speeds of 0.96 and 0.65 km/sec, 
respectively. These plates were accelerated by sheet charges. The speeds were measured 
in separate experiments by electrical-contact and optical methods. The obstacles were 
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